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Abstract. We report preliminary large scale ab initio calculations of ground and excited states of 16O using
quantum chemistry inspired coupled cluster methods and realistic two-body interactions. By using the
renormalized Hamiltonians obtained with a no-core G-matrix approach, we obtain the virtually converged
results at the level of two-body interactions. Due to the polynomial scaling with the system size that
characterizes coupled cluster methods, we can probe large model spaces with up to seven major oscillator
shells, for which standard non-truncated shell-model calculations are not possible.

PACS. 31.15.Dv Coupled cluster theory – 21.60.-n Nuclear structure models and methods

1 Introduction

One of the biggest challenges in nuclear physics is to un-
derstand how various properties, such as masses and exci-
tation spectra arise from the nucleon-nucleon interactions.
In recent years, construction of realistic nucleon-nucleon
potentials and progress in the development of Monte
Carlo [1] and no-core shell-model [2] techniques, combined
with improvements in computer technology, have enabled
to obtain converged results for nuclei with up to A = 12
nucleons, but one has to explore alternative approaches
that do not suffer from the exponential growth of the con-
figuration space with the system size and that could even-
tually be applied to medium-size systems in the mass 50–
100 region. Coupled cluster theory [3,4] discussed in this
paper is a particularly promising candidate for such an
endeavor due to its ability to provide precise description
of particle correlations at the relatively low computer cost
when compared to shell-model or configuration interaction
techniques aimed at similar accuracies [5,6].

Historically, coupled cluster theory originated in nu-
clear physics [3], but its applications to the nuclear many-
body problem have been relatively rare (see, e.g., [7]). On
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the other hand, after the early introduction of the coupled
cluster wave function ansatz and diagrammatic methods
of many-body theory into quantum chemistry by Č́ıžek [4],
coupled cluster methods have enjoyed tremendous success
over a broad range of problems related to molecular struc-
ture, properties, and reactivity. All kinds of coupled clus-
ter methods have been developed for closed-shell, open-
shell, nondegenerate, and quasidegenerate ground and ex-
cited states of many-electron systems [5,6]. As a result,
coupled cluster methods of the type of approximations
discussed in this article can nowadays be routinely ap-
plied to many-electron systems containing dozens of light
atoms, several transition metal atoms, hundreds of elec-
trons and thousands of basis functions (see, e.g., [8]). Sev-
eral coupled cluster methods are available in the popular
quantum chemistry software packages, enabling highly ac-
curate ab initio calculations of useful molecular properties
by non-experts. Much of this impressive development in
coupled cluster theory made in quantum chemistry in the
last 30 years still awaits applications to the nuclear many-
body problem. In our view, the field of nuclear physics
may significantly advance by adapting coupled cluster al-
gorithms, developed in the context of electronic structure
calculations, to the nuclear many-body problem.

Recent coupled cluster calculations for light nuclei
using modern nucleon-nucleon interactions and methods
similar to those used by quantum chemists show that one
may be able to overcome the difficulties posed by the
enormous dimensionalities of the shell-model eigenvalue
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problem. In particular, using bare interactions, Mihaila
and Heisenberg performed large scale coupled cluster cal-
culations for the binding energy and the electron scatter-
ing form factor of 16O [9]. We used a few quantum chem-
istry inspired coupled cluster methods and the renormal-
ized interactions to compute ground- and excited-state en-
ergies of 4He and ground-state energies of 16O in a small
model space consisting of 4 major oscillator shells [10].
These calculations indicate that quantum chemical cou-
pled cluster methods combined with realistic nucleon-
nucleon interactions and renormalized Hamiltonians can
provide very good accuracies at the relatively low com-
puter cost when compared to the exact shell-model diag-
onalization.

This paper highlights the results of our preliminary
large-scale calculations of ground- and excited-state ener-
gies and properties of the 16O nucleus using a new system
of efficient general-purpose coupled cluster computer pro-
grams for nuclear structure that we developed in recent
months using the elegant diagram factorization techniques
developed by quantum chemists [11,12]. While the ear-
lier large-scale coupled cluster calculations of Mihaila and
Heisenberg [9] used bare interactions, making the conver-
gence with the number of single-particle basis states very
slow, our calculations use the renormalized form of the
Hamiltonian exploiting a no-core G-matrix approach [13],
which allows us to obtain a rapid convergence with the
number of major oscillator shells in a basis. The ground-
and excited-state energies of 16O reported in this work
were calculated in basis sets consisting of up to 7 major
oscillator shells (336 single-particle states), whereas the
properties other than energy, such as charge radius, were
obtained in basis sets consisting of up to 6 major oscillator
shells. This is a significant progress compared to our ear-
lier calculations [10], in which we had to limit ourselves
to 80 single-particle states and energy calculations only.
The complete set of converged results will be reported
elsewhere once we complete the calculations.

2 Theory and computational details

We begin our discussion with the construction of the suit-
able form of the effective Hamiltonian (see fig. 1 for the
key components of our coupled cluster “machinery”).

2.1 Effective Hamiltonian

In this work, we use the Idaho-A nucleon-nucleon poten-
tial [14] which was produced using techniques of chiral
effective field theory [15]. The modern nucleon-nucleon in-
teractions, such as Idaho-A, include short-range repulsive
cores that require calculations in extremely large model
spaces to reach converged results [9]. In order to remove
the hard-core part of the interaction from the problem
and allow for realistic calculations in manageable model
spaces, we renormalize the interactions through a no-
core G-matrix procedure [13], which introduces a starting-
energy dependence ω̃ in the effective two-body matrix el-
ements G(ω̃). We use the Bethe-Brandow-Petschek [16]

Bare Hamiltonian (N3LO, Idaho-A, etc.)

Effective Hamiltonian (e.g., G-matrix, Lee-Suzuki)

Center of mass corrections (H ⇒ H+βcmHcm)

Sorting 1- and 2-body integrals of H
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Fig. 1. The key components of the system of nuclear-structure
coupled cluster programs used in this work.

Table 1. The excitation energies for the lowest 3− state of
16O obtained with the EOMCCSD approach and a basis set of
5 major oscillator shells for a few values of βc.m.

(in MeV).

βc.m.

= 0.5 βc.m.

= 1.0 βc.m.

= 1.5(a)

13.413 13.497 13.574

(a) The optimum value of βc.m.

giving the expectation value of Hc.m.

of 0.0 MeV.

theorem to alleviate much of the starting-energy depen-
dence. As a result, the dependence of our results on ω̃ is
weak (see ref. [13] for details). After renormalization, our
Hamiltonian is given by H ′ = t + G(ω̃), where t is the
kinetic energy. We correct H ′ for center-of-mass contam-
inations using the formula H = H ′ + βc.m.Hc.m., where
βc.m. is chosen such that the expectation value of the
center-of-mass Hamiltonian Hc.m. is 0.0 MeV. This sim-
ple method of correcting H ′ for center-of-mass contami-
nations has several advantages. One of them is the ease
of separation of intrinsic and center-of-mass contaminated
states by analyzing the dependence of the calculated cou-
pled cluster energies on βc.m.. The physical eigenstates of
the Hamiltonian are essentially independent of βc.m. (see
table 1 for the example). The center-of-mass contaminated
states show a strong, nearly linear dependence of excita-
tion energies on βc.m.. We are currently working on the
alternative approach, in which instead of the G-matrix
method, we will construct the renormalized Hamiltonian
with the help of the Lee-Suzuki approach [17], exploited in
no core shell-model calculations [2], which will eliminate
the starting-energy dependence from our calculations.

2.2 Coupled cluster calculations

Once the one- and two-body matrix elements of the center-
of-mass-corrected renormalized Hamiltonian H are deter-
mined, we solve the nuclear many-body problem using
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coupled cluster theory. In order to construct coupled clus-
ter equations in the most efficient way, we first sort the
one- and two-body matrix elements of H according to the
particle-hole character of single-particle indices that la-
bel them (cf. fig. 1). This is a common practice in coding
coupled cluster methods in quantum chemistry.

Figure 1 provides information about the types of com-
putations our system of nuclear-structure coupled clus-
ter programs can perform at this time. We always begin
with the basic CCSD (“coupled cluster singles and dou-
bles”) calculations, which provide information about the
correlated ground state |Ψ0〉. The CCSD method [18] is
obtained by truncating the many-body expansion for the
cluster operator T in the exponential wave function ansatz
exploited in coupled cluster theory, |Ψ0〉 = exp(T )|Φ〉,
where |Φ〉 is the reference determinant obtained by filling
the lowest-energy oscillator states, at the 2-particle-2-hole
(2p-2h) component T2. Thus, the truncated cluster oper-
ator T used in the CCSD calculations is T = T1 + T2,
where T1 =

∑
i,a t

i
aa

aai and T2 = 1
4

∑
ij,ab t

ij
aba

aabajai are

the singly and doubly excited clusters, i, j, . . . (a, b, . . .)
are the single-particle states occupied (unoccupied) in
the reference determinant |Φ〉, and ap (ap) are the usual
creation (annihilation) operators associated with the or-
thonormal single-particle states |p〉. We determine the

singly and doubly excited cluster amplitudes tia and t
ij
ab,

defining T1 and T2, respectively, by solving the non-
linear system of coupled, energy-independent, algebraic
equations, 〈Φa

i |H̄|Φ〉 = 0, 〈Φab
ij |H̄|Φ〉 = 0, where H̄ =

exp(−T )H exp(T ), and |Φa
i 〉 = aaai|Φ〉 and |Φab

ij 〉 =

aaabajai|Φ〉 are the singly and doubly excited determi-
nants, respectively, relative to the Fermi vacuum |Φ〉. The
explicit form of these and other equations used in cou-
pled cluster calculations, in terms of matrix elements of
the Hamiltonian and cluster amplitudes tia and t

ij
ab, can be

derived by applying diagram factorization methods which
yield vectorized computer codes [11,12]. Once tia and t

ij
ab

are determined, the ground-state CCSD energy ECCSD
0 is

calculated as E0 = 〈Φ|H̄|Φ〉.
For the excited states |Ψµ〉, we use the equation of mo-

tion (EOM) CCSD method [19] (equivalent to the linear
response CCSD approach [20]), in which we write |Ψµ〉 =

R(µ) exp(T )|Φ〉, where T = T1 + T2 and R(µ) = R0 +
R1 + R2 is a linear excitation operator, with R0, R1, and
R2 representing the relevant reference, one-body, and two-
body components of R(µ). Each n-body component of R(µ)

with n > 0 is a particle-hole excitation operator similar to
Tn, i.e. R1 =

∑
i,a r

i
aa

aai and R2 = 1
4

∑
ij,ab r

ij
aba

aabajai,

where ria and r
ij
ab are the corresponding excitation ampli-

tudes. These amplitudes and the corresponding excitation
energies Eµ − E0 are obtained by diagonalizing the simi-
larity transformed Hamiltonian H̄ in the relatively small
space of singly and doubly excited determinants |Φa

i 〉 and
|Φab

ij 〉. The similarity transformed Hamiltonian H̄ is not
hermitian, so that in addition to the right eigenstates
R(µ)|Φ〉, we can also determine the left eigenstates of H̄,
〈Φ|L(µ), which define the “bra” coupled cluster wave func-

tions 〈Ψ̃µ| = 〈Φ|L(µ) exp(−T ). Here, L(µ) is a hole-particle

Table 2. The energies of the ground state and the lowest 3−

state obtained with CCSD, CR-CCSD(T), and EOMCCSD,
and N = 5, 6, and 7 major oscillator shells (in MeV) using
the Idaho-A potential without Coulomb. The starting-energy
value used in the calculations was ω̃ = −80MeV.

Ground state The lowest 3− state

N CCSD CR-CCSD(T) EOMCCSD

5 −125.92 −126.26 −112.35
6 −121.53 −121.76 −108.55
7 −120.16 −120.76 −108.20

de-excitation operator, so that L1 =
∑

i,a l
a
i a

iaa and

L2 = 1
4

∑
ij,ab l

ab
ij a

iajabaa. The right and left eigenstates

of H̄ form a biorthonormal set, 〈Φ|L(µ) R(ν)|Φ〉 = δµν .

The left eigenstates 〈Φ|L(µ) become important if we are
to calculate properties other than energy, such as ex-
pectation values and transition matrix elements involv-
ing coupled cluster states 〈Ψ̃µ| and |Ψν〉 [19]; 〈Ψ̃µ|θ|Ψν〉 =

〈Φ|L(µ) θ R(ν)|Φ〉, where θ = exp(−T )θ exp(T ) is a similar-
ity transformed property operator θ. In particular, when
θ = apaq and µ = ν, we can determine the CCSD or
EOMCCSD one-body reduced density matrices in quan-
tum states |Ψµ〉, which can in turn be used to calculate
one-body properties, including charge and matter densi-
ties (in the CCSD ground-state case, where T = T1 + T2,
we have R(0) = 1 and L(0) = 1+Λ1 +Λ2, where Λ1 and Λ2

are obtained by solving the CCSD left eigenvalue problem,
often referred to as the “lambda equations”; cf. fig. 1).

The CCSD and EOMCCSD methods capture the bulk
of the correlation effects with the relatively inexpensive
computational steps that scale as n2

on
4
u, where no (nu)

is the number of occupied (unoccupied) single-particle
states, but there may be cases, where the effects of three-
body clusters T3 and three-body components R3 and L3

on the calculated ground- and excited-state energies and
properties become important. We can estimate the ef-
fects of T3 and R3 on ground- and excited-state energies
by adding the a posteriori corrections to the CCSD and
EOMCCSD energies Eµ, defining the CR-CCSD(T) and
CR-EOMCCSD(T) approaches [6,12,21], which require
the relatively inexpensive n3

on
4
u noniterative steps. These

corrections can be calculated using the T and R(µ) opera-
tors obtained in the CCSD and EOMCCSD calculations.
Here, we use variant “c” (or ID) of the ground-state CR-
CCSD(T) approach [10] (see [21] for the original work).

3 Results and discussion

We discuss the preliminary large-scale coupled cluster
calculations for 16O using methods described in sect. 2.
Shown in table 2 are the energies of the ground state and
the lowest 3− state obtained with CCSD (ground state),
EOMCCSD (the 3− state) and CR-CCSD(T) (ground
state), and 5, 6, and 7 major oscillator shells. The triples
corrections to the EOMCCSD energies of the 3− state will
be calculated in the near future along with other excited
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states and larger numbers of single-particle states to verify
the rapid convergence observed here.

We demonstrated earlier [10] that the corrections due
to T3 clusters resulting from CR-CCSD(T) calculations
are small in a basis including 4 major oscillator shells.
The same is true when larger basis sets are employed (see
table 2). Our results indicate that triples corrections to
the ground-state energy in 16O are less than 1% of the
total energy. For example, for the N = 7 calculation, the
difference between the CCSD and CR-CCSD(T) results
is 0.6 MeV. A simple extrapolation based on fitting the
data in table 2 to E(N) = E∞+a exp(−b ·N), where E∞
is the extrapolated energy and a and b are coefficients for
the fit shows that the extrapolated CR-CCSD(T) energy is
−120.5 MeV. Coulomb adds to the binding approximately
11.2 MeV, so that our estimated Idaho-A ground state en-
ergy is −109.3 MeV, compared to an experimental value
of −128 MeV. Thus, the two-body interactions underbind
16O by approximately 1 MeV per particle, leaving room
for extra binding to be produced by three-nucleon inter-
actions. Our preliminary conclusions are that connected
three-body clusters are small and that the basic CCSD
approximation produces a highly accurate estimate of the
binding energy in 16O due to two-nucleon interactions. We
plan to verify this statement by running calculations with
8 major oscillator shells and other interactions.

The first-excited 3− state in 16O, located experimen-
tally at 6.12 MeV above the ground state, is thought to
be a 1p-1h state [22]. The vast experience of quantum
chemistry with the EOMCCSD calculations for 1p-1h elec-
tronic states is telling us that the EOMCCSD method
should describe the 3− state of 16O well, if indeed this is a
1p-1h state and provided that the three-body interactions
in the Hamiltonian can be neglected (there are no three-
electron interactions in molecular systems). According to
our EOMCCSD calculations, the largest excitation ampli-
tudes for the 3− state of 16O are for the 1p-1h excitations
from the 0p1/2 orbital to the 0d5/2 orbital. The 2p-2h ex-
citations in the EOMCCSD wave function are very small,
confirming the 1p-1h nature of the lowest 3− state. If we
again extrapolate the CCSD and EOMCCSD energies for
the ground and 3− state, we obtain that the 3− state is
located at −108.2 MeV, i.e. 11.3 MeV above the CCSD
ground state. The ∼ 5 MeV difference between the ex-
trapolated EOMCCSD and experimental results suggests
that we may have to incorporate higher–than–two-body
clusters and/or three-nucleon interactions in the future to
explain the observed discrepancy between theory and ex-
periment. If the 3− state is predominantly a 1p-1h state,
triples effects should be small. This would mean that the
observed discrepancy between theory and experiment may
reside in the Hamiltonian. We plan to explore this issue
by performing the CR-EOMCCSD(T) calculations for the
first-excited 3− state and other interactions.

We also performed the preliminary CCSD calculations
of the ground-state density, using the recipe described in
sect. 2. The resulting densities for the 5 and 6 major oscil-
lator shells were used to determine the root-mean-square

(r.m.s.) charge radii. After correcting for the finite sizes of
the nucleons and the center-of-mass motion, we obtained
2.45 fm and 2.50 fm, respectively, in good agreement with
experimental charge radius of 2.73± 0.025 fm.

In summary, we have developed a system of coupled
cluster programs for nuclear structure calculations, us-
ing methods and algorithms developed in the context of
electronic structure studies. We discussed our preliminary
large scale calculations for the 16O nucleus. These calcu-
lations are among the first to probe, from an ab initio
point of view, the structure of both the ground and ex-
cited states of 16O in enormous model spaces, for which
non-truncated shell-model calculations are not possible.
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8. M. Schütz, J. Chem. Phys. 116, 8772 (2002); R.M. Olson

et al., J. Am. Chem. Soc. 127, 1049 (2005).
9. J.H. Heisenberg, B. Mihaila, Phys. Rev. C 59, 1440 (1999);

B. Mihaila, J.H. Heisenberg, Phys. Rev. Lett. 84, 1403
(2000); Phys. Rev. C 60, 054303 (2002); 61, 054309 (2002).

10. K. Kowalski et al., Phys. Rev. Lett. 92, 132501 (2004).
11. S.A. Kucharski, R.J. Bartlett, Theor. Chim. Acta 80, 387

(1991).
12. M. WÃloch et al., to be published in J. Chem. Phys.
13. D.J. Dean, M. Hjorth-Jensen, Phys. Rev. C 69, 054320

(2004).
14. D.R. Entem, R. Machleidt, Phys. Lett. B 524, 93 (2002).
15. S. Weinberg, Phys. Lett. B 363, 288 (1990); U. van Kolck,

Prog. Part. Nucl. Phys. 43, 337 (1999).
16. H.A. Bethe et al., Phys. Rev. 129, 225 (1963).
17. S.Y. Lee, K. Suzuki, Phys. Lett. B 91, 79 (1980); K.

Suzuki, S.Y. Lee, Prog. Theor. Phys. 64, 2091 (1980).
18. G.D. Purvis, R.J. Bartlett, J. Chem. Phys. 76, 1910

(1982).
19. J.F. Stanton, R.J. Bartlett, J. Chem. Phys. 98, 7029

(1993).
20. H. Monkhorst, Int. J. Quantum Chem., Symp. 11, 421

(1977); K. Emrich, Nucl. Phys. A 351, 379 (1981).
21. K. Kowalski, P. Piecuch, J. Chem. Phys. 120, 1715 (2004).
22. E.K. Warburton, B.A. Brown, Phys. Rev. C 46, 923

(1992).


	Introduction
	Theory and computational details
	Effective Hamiltonian
	Coupled cluster calculations

	Results and discussion

